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Large-scale vortex structures in turbulent wakes 
behind bluff bodies. Part 1. Vortex formation 
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By A. E. PERRY AND T. R. STEINER 
Department of Mechanical Engineering, University of Melbourne, 
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An investigation of turbulent wakes was conducted and phase-averaged velocity 
vector fields are presented, as well as phase-averaged and global Reynolds normal 
and shear stresses. The topology of the phase-averaged velocity fields is discussed in 
terms of critical point theory. Here in Part 1, the vortex formation process in the 
cavity region of several nominally two-dimensional bluff bodies is investigated and 
described using phase-averaged streamlines where the measurements were made in 
a nominal plane of symmetry. It was found that the flows encountered were always 
three-dimensional and that the mean-flow patterns in the cavity region were quite 
different from those expected using classical two-dimensional assumptions. 

1. Introduction 
Over recent years a considerable amount of work has been carried out at the 

University of Melbourne on the description of eddying motions in wakes and jets. 
Much of this work has been devoted to flow a t  moderate Reynolds numbers where 
in some cases the eddying motions can be made perfectly periodic in time by external 
stimulation such as an acoustic excitation (e.g. see Perry & Lim 1978; Perry, Lim 
& Chong 1980; Perry, Chong & Lim 1982; Perry & Tan 1984). Flow-visualization 
techniques and instantaneous velocity-vector-field measurements applicable to given 
phases of the vortex-shedding cycle a t  the source of the wake or jet showed that 
many flows could be qualitatively characterized by a relatively small number of 
distinct features located within the flow field. 

I n  much of the work just mentioned, the phenomena studied would be best 
described as unsteady periodic laminar flows. Some fully turbulent wakes behind 
bluff bodies have also been examined, where the vortex shedding has been deliberately 
‘locked in ’ to an oscillation of the body. Perry & Watmuff (1981) looked a t  large-scale 
phase-averaged velocity-vector-field patterns in the turbulent wake of an ellipsoidal 
body at high Reynolds number, with and without imposed oscillations of the body. 
Several years prior to this, Cantwell (1976) had obtained phase-averaged velocity 
vector fields in the turbulent wake behind a circular cylinder in cross-flow. In  spite 
of large-scale ‘phase jitter ’ caused in part by modulation in the frequency of vortex 
shedding a t  the source, and the fine-scale motions superimposed on the large-scale 
motions, it  was found that the general topological features present in the phase- 
averaged motions bear a strong resemblance to those in the forced periodic motions 
in laminar flow. 

Many features present in the latter flow cases can be described with the aid of 
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FIGURE 1 .  For caption see facing page. 
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‘critical-point ’ theory. Critical-point theory was initially developed by Oswatitsch 
(1957), Lighthill (1963) and others for the study of ‘no-slip’ flow in the vicinity of 
three-dimensional separation points. A critical point is a point in a flow field where 
the streamline slope is indeterminate. By expressing the velocity field as a series 
expansion in space about such points, a local solution of the Navier-Stokes and 
continuity equations can be obtained. This solution may consist of a set of 
relationships between the various coefficients in the expansion. From this, a 
classification of all possible regular critical points in a three-dimensional flow field 
can be derived. Perry & Fairlie (1974) extended the theory to  flow away from 
boundaries and this is highly relevant to eddying motions in free shear-layer flows 
such as jets and wakes. However, the Perry & Fairlie formulation was incomplete. 
They truncated their series expansion to include only terms that were first-order in 
the spatial coordinates, whereas terms up to at least third order must be retained 
if the complete set of possible critical points is to be obtained. The theory dealing 
with this more complete set has only recently been formulated by Perry (1984a, b)  
and this formulation also includes time dependence. 

Shown in figure 1 are a number of flow-pattern features. Included in this ‘pictorial 
dictionary ’ of features are a selection of critical-point patterns. These patterns 
consist of streamlines obtained by integrating the components of the three- 
dimensional velocity field that are resolved onto any plane that contains the critical 
point. Such patterns will be referred to as ‘sectional streamline patterns’ and more 
will be said about these in Part 2 of this paper (Steiner & Perry 1986). Of course, 
different sectioning planes through the flow surrounding a critical point will give 
different patterns. Here (Part 1) we confine our investigations to planes of symmetry 
where the velocity vectors are assumed not to pierce the plane but to lie in it. Thus 
in this plane we have true streamlines rather than sectional streamlines. Critical-point 
patterns have been examined and classified by Kaplan (1958) and Minorsky (1947, 
1962). Included in this classification are degenerate or ‘borderline ’ cases which exist 
between different types of critical points. For example, a ‘centre’ is a borderline case 
between a stable focus and an unstable focus. The degenerate ‘node-saddle’ is a 
borderline case between a node and a saddle (see figure 1 ) .  

Another important flow-pattern feature is the bifurcation line which may be either 
open or closed. A closed bifurcation line will be referred to as a ‘limit cycle’ in this 
work. Some of the theoretical properties of bifurcation lines are given in Hornung 
& Perry (1984), and Perry & Hornung (1984). Examples of these flow features are 
also included in figure 1. 

The features shown in figure 1 have been found to show up quite clearly in the 
phase-averaged patterns in turbulent flows where there is a dominant frequency of 
vortex formation and shedding at the source (e.g. a bluff body). Of course, the 
physical basis for their properties might need modification from that given in earlier 

FIGURE 1. ‘Pictorial dictionary’ of flow features. (a )  Unstable node?, ( b )  stable nodet, ( c )  salient 
edge, ( d )  saddlet, ( e )  idealized dislocated saddle (unsteady flow only)$, (f) dislocated saddle on a 
finite thickness shear layer, (9) stable focus, (h)  unstable focus, (i) centre, ( j )  negative open 
bifurcation line (stable), (k) positive open bifurcation line (unstable), (I) meta-stable open 
bifurcation line (neutrally stable), (m)  negative bifurcation line associated with stable focus, (n)  
negative closed bifurcation line (stable ‘limit cycle ’), ( 0 )  positive closed bifurcation line (unstable 
‘limit cycle ’), (p) simple shear (2-D and degenerate), (q)  degenerate ‘node-saddle ’ combination, ( r )  
non-degenerate combination of nodes and saddles. 

t m, and m2 are eigenvectors and are orthogonal in irrotational How. 1 Dislocated saddles ma) he 
considered as two half-saddles sitting back-to-back on a vortex sheet. 
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works, which looked a t  unsteady laminar flows. Perry & Watmuff (1981) did some 
preliminary work on the effect of ‘phase jitter’ on the appearance of critical points. 
The effect of superimposed fine-scale motions, such as those existing in turbulent 
flows, is not known. Broadly speaking, the physical interpretations attached to the 
various features should be similar to those relevant to the unsteady-laminar-flow 
cases. For example, a focus seen in a plane of symmetry is consistent with a vortex 
being subjected to an axial straining normal to that plane. As will be seen later, a 
limit cycle is consistent with the presence of a multi-celled vortex structure. A node 
in a plane of symmetry requires that there exist saddles in certain planes orthogonal 
to the plane of symmetry (see Perry et al. 1980; Perry 1984a). 

Critical points and bifurcation lines are the salient features of a flow pattern. The 
topological classification provides a useful and unambiguous language for describing 
complex flow fields, In  addition, a knowledge of their properties gives clues to the 
physical processes occurring in the flow. By observing the phase-averaged streamlines 
in a plane of symmetry of a complex three-dimensional flow pattern, certain 
out-of-plane features may be deduced using critical-point theory. 

Perry et al. (1982) used multiple exposures of Prandtl’s movie for flow past a 
circular cylinder made visible with aluminium particles on a free surface, and were 
able to deduce the essential topological structure of the streamline patterns a t  each 
stage of the vortex-shedding cycle. Such flow-visualization techniques cannot be used 
where the flow is turbulent and some statistical method with anemometry is then 
needed to obtain phase-averaged vector fields. Perry & Watmuff (1981), and 
Cantwell & Coles (1983) attempted such measurements using ‘ flying-hot-wire ’ 
techniques. The bias velocity imposed on the wires overcame the directional 
ambiguity problems of hot-wires placed in regions of reverse flow. However, the 
results were largely unsatisfactory in the cavity region because of insufficient spatial 
resolution. 

I n  Part 1 of this paper, the authors make a concerted effort to obtain some 
satisfactorily detailed phase-averaged velocity vector fields in the cavity region of 
a nominally two-dimensional bluff plate set normal to the flow, and behind a similar 
plate set at an angle of attack to the flow. These plates were mounted horizontally 
across the wind tunnel. In  Part 2 (Steiner & Perry 1986), the corresponding far-field 
wake patterns are determined, and also some far-field wakes behind a variety of 
three-dimensional bodies are presented. 

2. Apparatus and procedures 
2.1. Apparatus 

The University of Melbourne large flying-hot-wire system was used for all the 
experiments described here. This system has been described by Watmuff, Perry & 
Chong (1983) but some of the details have since been modified. The system is different 
from that described by Perry & Tan (1984) which was a miniaturized flying-hot-wire 
system of different design. 

In  experiments described by Cantwell (1976), and Cantwell & Coles (1983) hot-wire 
probes were mounted a t  the ends of a beam which was rotated about its mid-point. 
The system used here is shown in figure 2. An air-bearing ‘sled’ is used to carry a 
hot-wire probe rectilinearly with a significant bias velocity through highly turbulent 
flows. This bias velocity allows meaningful measurements to be taken in regions of 
reverse flow as well as improving the accuracy of measurements taken in regions of 
high turbulence intensity. 
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FIGURE 2. Schematic representation of the flying-hot-wire apparatus and mechanism used to 
open gate in body. 

The sled rides on a rail situated above the roof of the wind-tunnel working section. 
A ‘sting’ passes through the roof via a slot which is sealed with flaps. The hot-wire 
probe is supported a t  the end of the sting. The sled assembly is propelled back and 
forth by a pneumatic ram, and a special system of springs ensures that the motion 
is smooth. A straight-line motion mechanism called a ‘luffing mechanism’ allows air 
hoses and electrical cables to be attached to the sled without impairing its motion. 

Data is sampled during the upstream motion of the sled. In  order to obtain 
meaningful results in the cavity region where there is flow reversal, the wires need 
to come as close to the body as possible while still moving at high speed. A nominally 
two-dimensional bluff plate was chosen since it represents the simplest bluff-body 
case, and has the virtue of fixed separation points. A gate was incorporated in the 
plate to allow the probe to pass through without damage. This gate was quickly 
opened at the last moment permitting valid samples to be taken to within 1 ern of 
the plate. 

The apparatus for opening the gate is shown in figure 3. This mechanism applied 
a small closing force to the gate. An ‘outrigger’ rod which rode on the sled needed 
only to tap the gate with a very small force to cause the mechanism to release. This 
rod was supported a t  the end of a sting entirely separate from the one which 
supported the probe so as to minimize the vibrations being transmitted to the probe. 
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FIQURE 3. Schematic diagram showing mechanism used to open gate in bluff body 

The rod was sufficiently far from the probe to have negligible effect on velocity 
measurements. On release, the mechanism rapidly opened the gate allowing the 
probe to  pass through a t  high speed. No data was accepted once the gate opened. 
A distance of about 300 mm was required to bring the sled to rest before its motion 
was reversed. On the return stroke of the sled the gate mechanism was re-cocked once 
the probe was safely clear. 

The disturbance of the flow caused by the opening of the gate and the motion of 
the stings in the working section was convected downstream and it was estimated 
that there existed at least 1.25 m of uncontaminated flow immediately behind the 
body by the time the sled began its forward pass. As the region of interest for 
the near-wake cases was confined to  the 0.5m or so nearest to the body, flow 
contamination was considered not to be a problem. 

2.2. Data acquisition 
Unlinearized constant-temperature hot-wire anemometers were used throughout, 
and these were constructed and used according to the guidelines of Perry (1982). The 
cross-wires were ‘ matched ’ and dynamically calibrated. Calibration equations giving 
the velocity components as functions of the two anemometer voltages were estab- 
lished, and these took into account the nonlinearities of hot-wire anemometers. 

All data-acquisition and ‘ phase-sorting ’ techniques were essentially the same as 
outlined by Perry & Watmuff (1981) and Watmuff et al. (1983). They used an 
electronic simulation to  check the correct functioning of the rather complicated data 
acquisition and sorting. A much more direct method was devised to check these 
techniques for this work. The rotating ‘barbers’ pole ’ shown in figure 4 forms the 
basis of this check. An optical scanning head containing LEDs and a photodetector 
is carried on the end of the sting and simulates the hot-wire probe, while the light 
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FIQURE 4. Schematic diagram of ‘barber’s pole’ used for testing data acquisition and sorting 
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FIQURE 5. Allocation of samples into phases. Here z is streamwise distance upstream. In the 
remainder of the paper it is distance downstream. 

and dark bands on the rotating pole simulate eddies moving down the working 
section. Data is sampled and sorted on the basis of the phase of rotation of the pole 
using the same software as used for experiments. It was possible to $mulate 
accelerating eddies by having helical bands of varying pitch on the barbers’ pole. This 
demonstrates a major advantage of traversing the probe in a streamwise direction 
through many stations. Velocity vector fields may be produced independent of any 
Taylor hypothesis assumption, and this is vital if the flow is to be correctly 
interpreted in regions of rapid flow development. 

Data was sampled every ern in the streamwise direction, and the velocity of the 
sled was known at all times by frequency demodulation of streamwise position pulses 
spaced 1 mm apart. 

Phase detection was carried out using a stationary normal hot-wire probe situated 
near to but just outside of the near-wake region in the non-turbulent part of the flow. 
It was typically about 150 mm from the plane of symmetry and its optimum position 
in the other coordinates was found by trial and error. 
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For the results presented here, a power-spectral-density graph of the phase-detector 
signal showed a very strong dominant peak. The signal was band-pass filtered with 
a width of about one decade, the centre frequency being adjusted to correspond with 
the spectral peak. This gave a near-sinusoidal signal which modulated slightly in 
period and in amplitude. This signal was then passed through a Schmitt trigger and 
each leading edge of the resulting pulse train (referred to as ST2 pulses) was used 
to define the beginning of a new vortex-shedding cycle. 

Figure 5 shows how these ST2 pulses are distributed in one pass of the sled as it 
moves upstream. Since the velocity of the sled was approximately constant during 
the entire pass, its position was proportional to time and so sixteen spatial intervals 
between two successive ST2 pulses correspond to sixteen phase intervals of the 
vortex-shedding cycle. Unfortunately, at the end of the data-sampling length when 
the probe reaches the body, the phase detection is upset by the opening of the gate 
and another ST2 pulse is needed after this event in order to allocate data taken in 
the cavity region to the correct phase intervals. This was done by creating a ‘dummy’ 
ST2 pulse (labelled ST2, in figure 5 )  which assumed that the period of the last 
sampled vortex-shedding cycle was the same as the preceding period. For technical 
reasons a dummy ST2 opulse was also created at  the downstream end of the sampling 
length. The period between ST2 pulses was estimated to have had a standard 
deviation of 12 yo of the mean value. 

2.3. Convergence of data 

Randomness in vortex shedding causes considerable difficulties in obtaining phase- 
averaged vector fields. In the deterministic experiments of Perry & Tan (1984), an 
entire vector field in a plane of symmetry could be obtained in about 7 min. 

Here in this non-deterministic flow, attempts to obtain adequate data convergence 
solely by accumulating a large sample population would have required extremely 
long running times. Hot-wire drift over such long running times would have caused 
major difficulties. To obtain acceptable convergence within reasonable running times 
the following techniques were used. 

The hot-wire signals were low-pass filtered at  about one decade above the 
vortex-shedding frequency, and the data was 3-point smoothed in the streamwise 
direction with appropriate weighting given by the sample population a t  each point 
for each phase. This smoothing was carried out over a lengthscale smaller than the 
spatial limit imposed by phase resolution. Three-point smoothing was then carried 
out in both the streamwise and cross-stream directions. With these techniques it was 
found that 800 samples per position (or about 50 per position per phase) were 
sufficient for reasonable data convergence. This required a running time of about 
40 min per horizontal row. Data acquisition time was typically 8 h for each case and 
the longest case required about 16 h. Time required for calibrations and for running 
maintenance to the mechanical hardware was usually equivalent to the data 
acquisition time. Without filtering and smoothing however, our apparatus would 
need nearly 13 days of data acquisition time to obtain the same sample population 
as achieved by Cantwell & Coles. Their apparatus scanned the flow more rapidly by 
swinging hot wires through a circular arc at the end of a whirling arm and so they 
only took 27 h to gather 40 times the sample population here. Although the 
apparatus used here was much slower, it had the advantage of being able to scan a 
much larger region of the flow, and was better suited for exploring the cavity region. 
A further benefit was gained as a result of data reduction being virtually complete 
at  the end of the experiment. An investigation of the effect of data convergence on 
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Reynolds number and A fit- Blockage 
Case Experiment relevant lengthscale ( 1 )  U ,  ratio U ,  m/s 

1 

2 

3 

4 

Near wake 2-D normal body 

Near wake 2-D inclined body 

Near wake 2-D normal body 

Near wake 2-D normal body 

(no end plates fitted) 

(no end plates fitted) 

(end plates parallel) 

(end plates divergent) 

20000 - Projected height 9.4 0.170 0.246 2.971 

14100 - Projected height 13.2 0.161 0.174 2.954 

18900 - Projected height 5 0.215 0.246 2.814 

21 900 - Projected height 5 0.248 0.246 3.253 

(0.10 m) 

(0.071 m) 

(0.10 m) 

(0.10 m) 

TABLE 1 .  Some experimental parameters. St = Strouhal number wheref is the frequency in Hz of 
vortex shedding; U ,  is the free-stream velocity measured about 1 m upstream of the bodies; 
A = aspect ratio. 

the appearance of phase-averaged velocity field patterns is discussed in the 
Appendix. 

The problems of hot-wire drift encountered by Perry & Watmuff (1981) were 
approached as follows. Calibrations were performed before and after runs, and if the 
calibration constants changed by less than 2 % then all data were corrected assuming 
a linear drift in time. If the calibration constants varied by more than 2 yo the data 
would be rejected. Running checks were used to  detect any significant drift. 

2.4. Reflection of data 
Properties of antisymmetry in vortex shedding were assumed in order to  help keep 
running times down. This also helped to overcome the physical limitation of the 
probe traverse which prevented the probe from being carried a t  a height much above 
the plate centreline. I n  the cases where the plate was set normal to  the free-stream 
flow, data were collected along horizontal rows a t  and below the centreline. It was 
assumed that the vortex formation above the plate centreline was 180" out of phase 
relative to  that below. Thus by reflecting appropriate data about the plate centreline 
one could obtain the complete velocity field for a given phase. 

I n  the case of the inclined plate, the assumption of antisymmetry is not valid and 
the complete vector field was obtained in two runs. The plate and the phase detector 
were inverted between these two runs. 

2.5. Computation of streamlines 
Velocity vectors were assembled at points that  formed a grid of square elements each 
1 cm x 1 cm. All the streamlines presented here were calculated by integrating this 
velocity data. This was achieved by using a two-dimensional cubic spline interpolation 
between the grid points, coupled with a modified second-order predictor-corrector 
integration technique. I n  this way it was possible to eliminate the uncertainties 
inherent when sketching in streamlines by hand. Spline interpolation does not impose 
any further smoothing on the velocity field. 

3. Results 
This work produced a large amount of data which could not be presented here 

owing to space limitations. The full details and results from experiments performed 
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FIGURE 6. (a)  Mean velocity vector field and integrated streamline pattern for case of nominally 
two-dimensional body with no end plates. (b )  Integrated streamline pattern for flow in the wake 
of the normal bluff body with no end plates attached, a t  phase one of the vortex-shedding cycle. 
Observer stationary relative to the bluff body. (c) Same as ( b ) ,  except that the observer is moving 
downstream a t  2 m/s. The body is indicated by ‘phantom’ lines since it is not stationary in the 
observers frame of reference. 
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(c )  (4 
FIGURE 7. Some simple mean flow patterns in the wakes of nominally two-dimensional bluff bodies: 
(a )  two-dimensional and symmetrical ; ( b )  two-dimensional and asymmetrical ; ( c )  three-dimensional 
and symmetrical ; (d) three-dimensional and asymmetrical. 

may be found in Steiner (1984). Table 1 lists some experimental parameters for the 
cases presented. 

3.1. Near wake for a normal bl.8 body 

Figure 6 (a)  shows the time-mean flow pattern in the cavity region behind a normal 
bluff body with no end plates attached. This pattern was obtained by ensemble 
averaging all the phase-averaged data. Figure 6 (b)  shows the integrated phase- 
averaged streamline pattern for phase 1 of this case. Eddying motions are clearly seen 
only in the near wake and not further downstream where the pattern shows up as 
wavy streamlines. An observer moving downstream with the convection velocity of 
the far-wake eddies sees a different pattern (see figure 6c) in which the far-wake 
eddies are now clearly seen, but the near-wake eddies appear distorted. Figure 7 (a )  
shows the mean flow pattern expected using conventional assumptions of perfect 
two-dimensionality and symmetry. In such a pattern only saddles and degenerate 
centres are possible. The saddle points S1 and S2 may be joined giving a ‘closed’ 
cavity as a consequence of the assumption of symmetry. 

Two patterns are said to be topologically equivalent if they can be forced to 
correspond by appropriate distortion, as if the patterns were drawn on sheets which 
could be deformed at will without tearing. The idealized pattern shown in figure 7 (a )  
is said to be topologically unstable since an infinitesimal change in the flow 
parameters would cause a major change in the topology of such a pattern. Such 
patterns are unlikely ever to occur in practice since flows that are precisely 
two-dimensional and precisely symmetrical are extremely rare if not impossible. The 
measured pattern in figure 6 (a )  is neither symmetrical nor two-dimensional even 
though it has been measured in a nominal plane of symmetry. The pattern consists 
of saddles, foci and limit cycles. The asymmetrical appearance of the pattern is due 
to the existence of a small but finite vertical component of velocity along the 
centreline of the pattern. This allows integrated streamlines to cross over from the 
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FIGURE S(u-f). For caption see facing page. 
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FIGURE 8. Velocity field and integrated streamline pattern for the case of a nominally two- 
dimensional bluff body with no end plates attached : (a)-(h) correspond respectively to phases 1-8. 

upper half of the pattern to the lower half. As stated above, there is no reason to 
believe that the flow is precisely symmetrical even though reflection of the data 
embodies this assumption. Any slight departure from perfect antisymmetry in the 
vertical component of velocity about the plate centreline will have only a small effect 
on the pattern, but will have a great effect on how the separatrices are joined (i.e. 
the streamlines which emanate from saddle points or salient edges). Data along the 
centreline have a strong influence on this. Hence, the authors contend that for small 
departures from antisymmetry in the vertical component of velocity, it  is justified 
to retain data along the plate centreline and reflect all data to one side of it. This 
is preferable to artificially forcing the data along the plate centreline to have a zero 
component of vertical velocity. 

Figures 7 (M) show some further simple topologies for different cavity flows seen 
in planes of symmetry. Case ( b )  is an unsymmetrical two-dimensional cavity and an 
‘alleyway’ (shown shaded) penetrates right through the cavity. Flow case (c)  is 
three-dimensional and symmetrical and it can be seen that the pattern has a net 
divergence in the plane of symmetry. This is due to fluid in the mean approaching 
the plane of symmetry from either side. That is, in this example the vortices are being 
compressed axially normal to the plane of symmetry. Figure 7 ( d )  shows the pattern 
in a three-dimensional and unsymmetrical flow. It will be noted that the pattern in 
figure 7 (d )  appears to have a similar topology to the mean flow pattern in figure 6, 
except for the appearance in the experimental data of two nested limit cycles 
associated with each focus. 

Figure 8 shows the phase-averaged plots for the first eight phases of the cycle. The 
remaining eight phases may be found simply by reflecting these patterns about the 
centreline. Figure 9 shows the interpretations of the plots given in figure 8. These 
were obtained using the integrated streamline patterns as a guide, and then sketching 
in the separatrices. A few additional streamlines have been included to make clear 
the essence of the topology. Dislocated saddles as mentioned by Perry & Watmuff 
(1981) are shown only where they are obvious in the integrated streamline plots. 

From the sequence of interpretations in figure 9, there is a major difference in the 
vortex formation process from that described by Perry et al. (1982). In figure 9(d) 
we define what is meant by the terms ‘attached’ eddy, ‘detached’ eddy, and ‘shed’ 
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FIGURE 9. Interpretations of integrated streamline patterns given in figure 8. (a)-(g) correspond 
respectively to phases 1-8. ----, possible separation streamline positions. 
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FIQURE 10. Typical instantaneous streamline pattern for the flow in the cavity region behind a 
nominally two-dimensional cylinder in cross-flow (conjectured by Perry et a2. (1982)). 

FIGURE 11. Streamline pattern which is a two-dimensional analogue of that  for phase 5 in 
figure 10(e). 

eddy. An attached eddy has a separatrix that is attached to the plate. Figure 10 
shows the typical instantaneous streamline pattern conjectured by Perry et al. (1982) 
for the cavity region behind a nominally two-dimensional circular cylinder in 
cross-flow with laminar flow. The eddy which is just beginning to form is attached 
to the cylinder, whereas in figure 9, phases 3-6, it is shown clearly that such an eddy 
may be detached from the body at  formation and become attached a t  some later 
stage of the cycle. During the cycle, the appearance of eddies can change from being 
stable foci to unstable foci. This bifurcation process appears to be consistently 
accompanied by the appearance of a limit cycle. 

Figure 11 is a two-dimensional analogue of phase 5 in figure 9. It can be seen that 
both figures show an ‘instantaneous alleyway ’ of fluid which penetrates through the 
cavity. This may be related to the process of entrainment of irrotational fluid into 
the wake, and also how fluid (such as smoke or dye) can be transported across the 
wake. 

Figure 12 shows a velocity field superimposed on the corresponding boundary of 
0.5 phase-averaged intermittency factor. The intermittency was found using the 
same technique as Cantwell & Coles (1983). When the observer moves with the 
convection velocity of the pattern, saddles appear to sit on this contour and align 
themselves with it. This is similar to the result that Cantwell (1976) obtained. This 
contour gives a rough idea of the shape of a smoke or dye interface and, as shown 
by Perry et al. (19801, the indentations of the interface correspond with alleyways 
of irrotational fluid penetrating the wake. 

Figure 13 shows phase-averaged contours of vorticity, and Reynolds normal and 
shear stresses. Superimposed on these plots is the contour of 0.5 intermittency factor. 
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FIGURE 12. (a) Velocity field with boundary of 0.5 intermittency factor superimposed. Observer 
stationary with respect to the body. (b) As for (a), except that the observer is moving downstream 
with the far-wake pattern at 2 m/s. 

The general features are the same as found by Cantwell & Coles (1983) for flow behind 
a circular cylinder at  a Reynolds number of 140000. 

By ensemble averaging the phase-averaged stresses we obtain the mean of the 
phase-averaged contributions. These are somewhat lower than the global (or total) 
stresses at the same positions. We are using the same triple decomposition scheme 
as Cantwell & Coles (1983). The phase-averaged contribution to is about 25% in 
the near wake. Overbars are used here to denote temporal means. The corresponding 
proportion for P is 40 yo-50 %, and for about 50 % which rapidly diminishes to  
20 % at about three plate heights downstream. Here uf and u’ are the perturbations 
in u and v from their temporal mean values. 

Mean velocity and Reynolds-stress profiles, and an explanation of how they were 
obtained is given in Part 2 of this paper. 

Roshko (1954) showed how an estimate of the total circulation of each sign, shed 
by a bluff body during a single vortex-shedding cycle, could be determined. Davies 
(1976) used an expression derived from this which gave the fraction of this total 
circulation that existed in a particular eddy, 

223 r* 
(1-  C,d ’ 

a =  
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FIQURE 13. Contour plots ( a )  non-dimensionalized phase-averaged vorticity (wd/  Urn) ; (a) non- 
dimensionalized phase-averaged normal stress ( Z / U % )  ; ( c )  non-dimensionalized phase-averaged 
normal stress ( p / U L )  ; (d )  non-dimensionalized phase-averaged shear stress (m/ v",). 



250 A .  E .  Perry and T .  R.  Xteiner 

11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 Phase 

FIGURE 14. Calculated fractional circulation content of an eddy in the wake of the nominally 
two-dimensional bluff plate with no end plates attached, as a function of phase of the vortex- 
shedding cycle. The peak value is indicated when the centre of the eddy lies around X / H  = 3. 
a = 2StT*/(l-Cc,,,); r* = jJ(od/U,)dA/JjdA. 

FIGURE 15. Mean velocity vector field and integrated streamline pattern for the case of a 
nominally two-dimensional body a t  an angle of attack of 45". 

where a is the fractional circulation remaining in a particular eddy, X t  is the 
Strouhal number (St = fl/U,, where f = frequency in Hz, U ,  = free-stream 
velocity, 1 = lengthscale of the body), C,, is the base pressure coefficient, r is 
the non-dimensionalized circulation content of the eddy = r/ U ,  1. 

The circulation content of an eddy was estimated by summing the phase-averaged 
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FIQURE 16. Expected mean streamline patterns behind a two-dimensional bluff plate at  an 
angle of attack. (6) shows the more likely pattern with saddle points S, and S, not joined. 

vorticity of one sign over an area surrounding the centre of an individual eddy. This 
was repeated, following the same eddy downstream over different phases of the 
vortex-shedding cycle, to obtain the graph given in figure 14. The values indicated 
are of similar order to values given by Davies (1976), Cantwell & Coles (1983) and 
Nielsen (1970) for a variety of bluff-body flows. The rapid decay of circulation is 
probably due in part to turbulent diffusion and vorticity cancellation. Also the decay 
could be due to a continuous convective transfer of vorticity from one vortex of one 
sign to a vortex of the opposite sign by the interconnecting saddle patterns as 
mentioned by Cantwell & Coles (1983). 

3.2. Near wake behind a n  inclined blu8 plate 
This case was chosen since it resembles the flow over a nominally two-dimensional 
stalled wing. Figure 15 shows the mean flow obtained by ensemble averaging all the 
phase-averaged patterns. Figures 16 (a ,  b) show patterns that one might expect using 
conventional two-dimensional thinking. Figure 16 (b)  is more likely since the saddle 
points are not joined. It is quite obvious that the measured pattern bears little 
resemblance to either of these conjectured patterns. 

Unlike the normal-bluff-plate cases, this case does not have antisymmetric vortex 
formation and shedding and so it is necessary to show all 16 unique phases. 
Integrated streamline patterns are shown in figure 17, and their interpretations in 
figure 18. Although i t  is clear that vortices are being shed from both sides, only one 
vortex shows up in the temporal mean plot in figure 15. Again the flow is 
three-dimensional as evidenced by the existence of foci and limit cycles. The rather 
unexpected appearance of the pattern in figure 15 is because the vortex formed near 
the leading edge resides for a longer period in the cavity region than does the 
trailing-edge vortex. This case shows very clearly a half-saddle residing on a shear 
layer (see figures 17 and 18, phases 12 and 13). 

3.3. Near wakes behind normal bluff bodies with end plates attached 

In the cases shown so far, the ends of the bluff bodies were simply butted up against 
the wind-tunnel walls - no particular attention was paid to the end conditions of the 
bodies. In  view of the obvious three-dimensionality of the flow indicated by the 
preceding results it was decided that end plates would be used in order to reduce this 
three-dimensionality. The design of the end plates was similar to that of Graham 
(1969) who also suggested that a small but finite angle between the two end plates 
could have a beneficial effect. The end-plate design is shown in figure 19. Careful 
testing indicated that the lowest degree of three-dimensionality was actually 
obtained when no end plates were used. This was felt to be a consequence of the 

9 B L X  174 
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FIGURE 17(a-h). For caption see facing page. 
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FIQURE 17. Velocity vector fields and integrated streamline patterns behind inclined bluff plate. 
(a)-@) Correspond respectively to phases 1-16. 
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FIGURE 18(a-h). For caption see facing page 
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FIGURE 18. Interpretations of patterns shown in figure 17. 
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FIQURE 19. Design and attachment of end plates. Attachment of end plates ( a )  is as viewed 
from the rear of the body. 
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FIQURE 20. Mean velocity vector field and integrated streamline pattern for the case of a nominally 
two-dimensional bluff plate set normal to the free-stream flow, and with end plates set parallel to 
each other. The observer is at rest with respect to the bluff body. 

reduction in effective aspect ratio A of the bluff body when end plates were attached: 
A is reduced from 9.4 to 5. It was nevertheless decided to gather data behind the 
bluff body with end plates both set parallel and diverging in order to determine the 
effect that varying the end conditions had on the near-wake flow patterns. The 
unexpectedly high degree of three-dimensionality for these cases was considered to 
be of interest since it graphically demonstrates how sensitive the cavity-region flow 
is to end conditions. In  addition patterns with interesting topological properties are 
produced. 

Figure 20 shows the temporal mean flow for the case with parallel end plates, and 
no eddying motions are apparent. The phase-averaged patterns for eight phases of 
the cycle are given in figure 21. Here as in the previous normal-plate case the vortex 
shedding was assumed to be antisymmetrical. The cavity vortices appear to be 
confined closer to the plate than when no end plates were fitted. Figure 22 shows 
interpretations of the different phases for this case. 

The temporal mean pattern for the case with diverging end plates is shown in figure 
23. Figures 24 and 25 give the phase-averaged patterns and their interpretations 
respectively. For this case the cavity appears to be completely detached from the 
plate a t  all phases, and vortex roll-up occurs further downstream than is evident in 
any of the preceding flows. This unexpected behaviour was verified using flow- 
visualization techniques. In  this nominal plane of symmetry the plate appears to 
behave as if it  were porous. In  fact the plate would have a series of nodes and saddles 
located on it as given in figure 1 ( r ) .  Considering phase 1 in figure 25, the simplest 
pattern that is topologically equivalent is sketched in figure 26. 

4. Convergence of data and the existence of limit cycles 
In the Appendix, the convergence of data is examined and i t  is concluded that the 

various flow-pattern features discussed are real. False limit cycles can occur if the 
data has not converged but from the analysis given in the Appendix it appears that 
most of the limit cycles are real. A limit cycle is consistent with the existence of a 
multi-celled vortex structure. Sullivan ( 1959) analysed a solution to the Navier-bhokes 
equation that has a two-celled vortex structure, sketched in figure 27(a) .  It can 5e 
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FIGURE 21 (a-f). For caption see facing page. 
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FIGURE 21. Velocity vector field and phase-averaged integrated streamline patterns behind 
normal bluff body with parallel end plates. (a)-@) Respectively correspond to phases 1-8. 

shown that the Sullivan vortex implies that vortex filaments are wound up into a 
peculiar ' bi-helical ' form. A computed pictorial representation of such a vortex- 
filament configuration is shown in figure 27(b) .  The filaments are wound about 
cylindrical 'shells ' into helices which have opposite-signed pitch angles on either side 
of the plane of symmetry. The helices are wrapped progressively tighter as one moves 
axially away from the plane of symmetry. This helical wrapping of the vortex 
filament may be associated with some possible spanwise waviness of the vortices shed 
from the body. 

Whether this waviness is associated with a 'cellular ' type of flow separation as 
observed by Korotkin (1976) and others from a circular cylinder is not known at this 
stage. 

5. Discussion and conclusions 
Phase-averaged vector fields and the associated streamline patterns are presented 

for flow in the nominal plane of symmetry of the near wake of some nominally 
two-dimensional bluff bodies. Patterns in the cavity region are produced using data 
obtained with reasonably high resolution for sixteen phases of the vortex-shedding 
cycle. Some turbulence quantities are also presented. 

Of all the results presented here, the most useful information regarding the 
physical processes involved comes from the streamline patterns. Broadly speaking, 
the topological structure of the flow in the case of the normal bluff body without end 
plates is similar to that suggested by the two-dimensional laminar vortex-shedding 
patterns reported by Perry et al. (1982). There are however some important 
differences. The flow is obviously three-dimensional as evidenced by the appearance 
of foci and limit cycles. The precise nature of the three-dimensionality is not known 
at this stage but the authors suspect that a periodic waviness of the vortex cores in 
the spanwise direction is involved. 

During parts of the shedding cycle the vortices are undergoing axial stretching and 
appear as stable foci in the plane of symmetry, and at other times axial compression 
leads to the appearance of unstable foci. The appearance of limit cycles seems to 
occur as part of the bifurcation process associated with such a change in the nature 
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FIGURE 22. Interpretations of patterns shown in figure 21 (a)-@) correspond respectively to 
phases 1-8. 
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FIGURE 24. Velocity vector fields and phase-averaged streamline patterns behind normal bluff 
body with diverging end-plates. (a)-(h) Correspond respectively to phases 1-8. 

of a focus. From a study of the simple Sullivan vortex, which appears to resemble 
the observed patterns, such limit cycles can be explained in terms of vortex filaments 
being deformed into helices in the roll-up process. 

The cavity region behind the inclined bluff plate is topologically similar to that 
of the normal bluff plate at any phase of the cycle. The residence time in the cavity 
of the vortex formed at  the leading edge is longer than for the vortex forming at the 
trailing edge. This gives a rather unexpected mean-flow pattern behind the inclined 
plate. 

The mean-flow patterns of the bluff plates set normal to the free-stream flow are 
not perfectly symmetrical, nor do they contain closed cavities as is usually assumed 
in descriptions of near wakes. For the normal bluff plate with end plates, the results 
indicate that the flow patterns are highly sensitive to the end conditions. The mean 
flow patterns in the cavity region have undergone a dramatic change in topological 
structure. The phase-averaged vector fields indicate that the alignment of the end 
plates may have a strong influence on the position of the foci, and hence of the 
location of vortex roll-up. Parallel end plates caused vortex formation to occur close 
to the body, whereas diverging end plates led to vortex roll-up taking place further 
from the body. 
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FIQURE 25. Interpretation of patterns shown in figure 24. (a)-@) correspond respectively to 
phases 1-8. 
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FIGURE 26. Simplest non-degenerate pattern that is topologically equivalent to phase 1 in 
figure 25. 
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FIGURE 27. (a) A comparison of the structure of a two-celled Sullivan vortex with that of the 
single-called Burgers’ vortex. (b) A computed view of a vortex filament in a Sullivan vortex. 
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FIGURE 28. (a )  Velocity vector field and integrated streamline pattern for solid body rotation with 
3 %  degree of randomization (no smoothing applied). (6) Same as for (a ) ,  except that 3-point 
smoothing has been applied in both the vertical and horizontal directions. 

In  the rather complex phenomenon of vortex shedding, i t  is difficult to decide what 
quantities are the most relevant to measure for gaining insights into the physical 
processes involved. Three-dimensional phase-averaged vorticity fields would seem to 
be the most relevant and useful since these would show how sheets are rolled-up and 
how vortex cores are deformed in the spanwise direction. The velocity field would 
be contained in such measurements and could always be recovered by using the 
Biot-Savart law. Unfortunately at this stage of development such measurements are 
out of our reach. We believe that in the field of computational fluid dynamics, 
turbulence modelling should be directed towards phase-averaged motions. This is a t  
least one stage better than modelling on the basis of the time-averaged equations of 
motion and introduces the simplest form of time dependence. The quantities most 
conveniently produced for comparison with experimental results would be phase- 
averaged velocity vector fields and phase-averaged streamline patterns. This work, 
like that of Cantwell & Coles, shows that time-averaged motions bear little resem- 
blance to phase-averaged motions and any attempt to model such flows with global 
time-averaged equations appears to be far removed from reality. Unless computa- 
tional methods can produce patterns similar to those experimentally observed in 
nature such as those presented here, such activities will always remain unconvincing. 

Appendix A. Smoothing of data convergence and the existence of limit 
cycles 

It is very difficult to objectively distinguish random variations in the data from 
genuine variations indicative of fluid-dynamical features. Excessive smoothing may 
remove some important features, while insufficient smoothing may leave the data too 
sensitive to the random variations. As a guide for deciding whether or not the 
smoothing used here was justifiable when the data had not fully converged, a known 
analytical solution was tested. The pattern generated for an idealized solid-body- 
rotation flow is a set of concentric circular streamlines. Figure 28(a)  shows the 
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FIGURE 29(n-d). For caption see facing page. 

velocity field and integrated streamline pattern one obtains when the velocity 
components have a random component added to them. This random component 
simulates a lack of convergence of the data and was generated with a Gaussian p.d.f. 
For the purposes of this work we shall use the term 'degree of randomization', say, 
in figure 28 (a)  as the ratio of the r.m.s. random component of velocity to the r.m.s. 
value of all velocity components shown in the corresponding 'perfectly converged ' 
vector field. 

Figure 28 (a )  shows that a 3 % degree of randomization has caused a change in the 
topological structure of the pattern from a centre to a set of nested limit cycles. A 
centre is a degenerate pattern and hence is structurally unstable so that any slight 
lack of convergence can Iead to changes in the topological structure. The emergence 
of a set of nested limit cycles in this case suggests that if the flow is close to 
two-dimensional, i.e. the streamlines spiral into or out from foci a t  a slow rate, then 
the observed topological structure may be very sensitive to a lack of convergence of 
the data. The result of 3-point smoothing along and across the rows of data is shown 
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FIGURE 29. (a) Velocity vector field and integrated streamline pattern for a Burgers' vortex (plane 
of symmetry). (b)  Same as (a), except that a 3 yo degree of randomization has been applied to the 
velocity components. (c) Same as (b ) ,  except that 3-point smoothing has been applied to the 
'randomized ' data. (d )  Same as (a), except that a 9 yo degree of randomization has been applied 
to the Burgers' vortex velocity field. ( e )  Same as (d )  except that multiple-point smoothing has been 
applied. (f) Same as (a),  except that a 18% degree of randomization has been applied to the 
Burgers' vortex velocity field. (9) Same as (f), except that multiple-point smoothing has been 
applied. 

in figure 28(b) .  This is identical with the second stage of smoothing applied to the 
experimental data as described in $2.3. It can be seen that the pattern still consists 
of nested limit cycles but that now the streamlines are less irregular. 

The situation is different where foci have streamlines spiralling in or out a t  an 
appreciable rate. Figure 29 shows the effect of increasing the degree of randomization 
of the velocity components of a so-called Burgers' vortex (see Burgers 19481, and 
then applying 3-point smoothing. Figure 29 (u) shows the idealized Burgers' vortex 
that models a viscous vortex undergoing axial strain. The solution is steady and 
satisfies the Navier-Stokes and continuity equations. With 3 "/o randomization the 
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FIGURE 30. (a )  Experimental data (phase 2 figure 24 (inverted)) before 3-point smoothing in the 
streamwise and cross-stream directions (but after smoothing along rows weighting data according 
to sample population). ( b )  Same as (a) ,  except that multiple-point smoothing has been applied. 

pattern is largely unchanged, except for a slight waviness in the streamlines and the 
appearance of a small limit cycle. This is shown in figure 29(b). Data yielding the 
pattern in figure 29(b) was then 3-point smoothed to produce the pattern in figure 
29(c). This pattern has the same topological structure as the original ‘perfectly 
converged’ pattern. The appearance of the two patterns is very similar as streamlines 
spiral in at  about the same rate. 

Figures 39 (d, e) show the effect of 9 % randomization with and without smoothing 
respectively. The randomization of the velocity components leads to very wavy 
integrated streamlines in figure 29(d), and one node and a small limit cycle have 
appeared. After 3-point smoothing the topological structure of the underlying 
Burgers’ vortex has re-emerged. 

Increasing the degree of randomization to 18 % and integrating to obtain figure 
29 (f ) we have altered the topological structure. Many extraneous critical points have 
been generated by the ‘lack of convergence’, but although each one has only a 
localized effect, the original pattern appears disguised. No limit cycles are evident 
however. By simple 3-point smoothing of the data (see figure 29(g)) a pattern very 
similar in appearance, and topologically identical with, the original Burgers’ vortex 
is revealed. Clearly, experimental data giving such a ‘chaotic’ pattern as that shown 
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in figure 29 ( f )  would not be acceptable although it  may be seen that simple 3-point 
smoothing can be surprisingly effective in extracting the underlying large-scale 
behaviour from a set of badly converged data. 

We have seen that apparent limit cycles may be produced when the data are badly 
converged. However, without exception they were localized to one or two data grid 
elements regardless of the actual scale of the grid involved and they were removed 
by smoothing the data. The limit cycles observed in the experimental data behaved 
differently as they are not so severely localized, and are not removed by smoothing. 
This is shown in figure 30, where ( a )  shows experimental data prior to 3-point 
smoothing along and across the horizontal rows, and (b)  the same data smoothed. 
This data belongs to  one phase of the vortex-shedding cycle of the wake of a normal 
bluff body with end plates diverging (figure 24, phase 2). From the appearance of the 
pattern before the data is smoothed the degree of randomization, or lack of 
convergence, was estimated to be of the order of 3 yo. 

We may conclude from this work that small limit cycles that can be removed by 
smoothing are probably not genuine features of the flow, but rather may be produced 
by lack of convergence of the data. On the other hand, limit cycles that are large 
and remain substantially unaltered after smoothing should be treated as genuine 
features of the fluid dynamics involved. 

Furthermore, in an experimental situation where only a finite sample population 
can be gathered, i t  is possible that a series of nested limit cycles is indicative of a 
region of nearly two-dimensional vortical flow. This behaviour is seen in the temporal 
mean-flow pattern in figure 6 (a) .  Such a flow pattern should be treated with caution. 
However, the authors believe that many of the experimentally obtained limit cycles 
are real. Perry & Tan (1984) encountered limit cycles in their deterministic 
experiments with co-flowing jets and wakes even though their technique of producing 
integrated streamlines differs from the method used here. 
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